Filters

Topics (hold ctrl / ⌘ to select more)

Languages (hold ctrl / ⌘ to select more)

Traditions (hold ctrl / ⌘ to select more)

Times

- or

Medium:

 
 
 
 

Recommended use:

 
 
 
 

Difficulty:

 
 
 

Full text
Sagi, Gil. Models and Logical Consequence
2014, Journal of Philosophical Logic 43(5): 943-964.

Expand entry

Added by: Berta Grimau

Abstract: This paper deals with the adequacy of the model-theoretic definition of logical consequence. Logical consequence is commonly described as a necessary relation that can be determined by the form of the sentences involved. In this paper, necessity is assumed to be a metaphysical notion, and formality is viewed as a means to avoid dealing with complex metaphysical questions in logical investigations. Logical terms are an essential part of the form of sentences and thus have a crucial role in determining logical consequence. Gila Sher and Stewart Shapiro each propose a formal criterion for logical terms within a model-theoretic framework, based on the idea of invariance under isomorphism. The two criteria are formally equivalent, and thus we have a common ground for evaluating and comparing Sher and Shapiro philosophical justification of their criteria. It is argued that Shapiro's blended approach, by which models represent possible worlds under interpretations of the language, is preferable to Sher’s formal-structural view, according to which models represent formal structures. The advantages and disadvantages of both views’ reliance on isomorphism are discussed.

Comment: This paper provides an original view on the debate on the adequacy of the model-theoretic notion of logical consequence as well as a good overview of the relevant part of the debate. It can be used as standing on its own, but it can also serve as a complement to Sher (1996), also written by a female logician, and Shapiro (1998). Adequate for a general course on philosophy of logic or in a more specialized course on logical consequence. The paper is not technical, although students should've have taken at least an introductory logic course.

Full textRead free
Brading, Katherine, Elena Castellani. Symmetry and Symmetry Breaking
2013, The Standford Encyclopedia of Philosophy

Expand entry

Added by: Laura Jimenez

Introduction: Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics suggests new physics. This entry begins with a brief description of the historical roots and emergence of the concept of symmetry that is at work in modern science. It then turns to the application of this concept to physics, distinguishing between two different uses of symmetry: symmetry principles versus symmetry arguments. It mentions the different varieties of physical symmetries, outlining the ways in which they were introduced into physics. Then, stepping back from the details of the various symmetries, it makes some remarks of a general nature concerning the status and significance of symmetries in physics.

Comment: This article offers a good introduction to the topic of symmetries. The entry begins with a brief description of the historical roots and emergence of the concept of symmetry that could serve as a reading for undergraduates. It then turns to the application of this concept to physics and merges the discussion with issues in relativity and quantum mechanics. This second part of the article is thus more suitable to postgraduate courses in philosophy of science, specially, philosophy of physics. It could serve as a secondary reading for those researching the laws of nature.

Full text
Demarest, Heather. Fundamental Properties and the Laws of Nature
2015, Philosophy Compass 10(5) 224-344.

Expand entry

Added by: Laura Jimenez

Abstract: Fundamental properties and the laws of nature go hand in hand: mass and gravitation, charge and electromagnetism, spin and quantum mechanics. So, it is unsurprising that one's account of fundamental properties affects one's view of the laws of nature and vice versa. In this essay,the author surveys a variety of recent attempts to provide a joint account of the fundamental properties and the laws of nature. Many of these accounts are new and unexplored. Some of them posit surprising entities, such as counterfacts. Other accounts posit surprising laws of nature, such as instantaneous laws that constrain the initial configuration of particles. These exciting developments challenge our assumptions about our basic ontology and provide fertile ground for further exploration.

Comment: The article introduces in a simple way some fundamental concepts such as ‘law of nature’, ‘properties’, the notion of ‘categorical’ and ‘dispositional’ or the distinction between the governing and the systems approaches. It could serve as an introduction for those undergraduates that have never heard of these concepts before, or as a further reading for those in need of clarification. Some examples of modern fundamental physics are used as examples.

Full textSee used
Nersessian, Nancy. Creating Scientific Concepts
2008, MIT Press.

Expand entry

Added by: Laura Jimenez

Publisher's Note: How do novel scientific concepts arise? In Creating Scientific Concepts, Nancy Nersessian seeks to answer this central but virtually unasked question in the problem of conceptual change. She argues that the popular image of novel concepts and profound insight bursting forth in a blinding flash of inspiration is mistaken. Instead, novel concepts are shown to arise out of the interplay of three factors: an attempt to solve specific problems; the use of conceptual, analytical, and material resources provided by the cognitive-social-cultural context of the problem; and dynamic processes of reasoning that extend ordinary cognition. Focusing on the third factor, Nersessian draws on cognitive science research and historical accounts of scientific practices to show how scientific and ordinary cognition lie on a continuum, and how problem-solving practices in one illuminate practices in the other.

Comment: Nersessian’s book has a two-fold foundation, first, the empirical analysis of two cases of scientific thinking (one from Maxwell and one from a verbal protocol of a scientist); second, philosophical and cognitive analysis of the overall picture of meaning change in science that is the result of her work. The book presents her argument via an introductory chapter, followed by five chapters that develop the argument. Chapter 4 is particularly interesting for the cognitive-scientist: in this chapter Nersessian develops her account of the basic cognitive processes that underlie model-based reasoning. The new approach to mental modeling and analogy, together with Nersessian’s cognitive-historical approach, make Creating Scientific Concepts equally valuable to cognitive science and philosophy of science. The book is accessible and well-written, and should be a relatively quick read for anyone with a previous background in the mentioned fields. It is mainly recommended for postgraduate courses.

Full text
Bokulich, Alisa. Distinguishing Explanatory from Nonexplanatory Fictions
2012, Philosophy of Science 79(5): 725-737.

Expand entry

Added by: Jamie Collin

Abstract: There is a growing recognition that fictions have a number of legitimate functions in science, even when it comes to scientific explanation. However, the question then arises, what distinguishes an explanatory fiction from a nonexplanatory one? Here I examine two cases - one in which there is a consensus in the scientific community that the fiction is explanatory and another in which the fiction is not explanatory. I shall show how my account of "model explanations" is able to explain this asymmetry, and argue that realism - of a more subtle form - does have a role in distinguishing explanatory from nonexplanatory fictions.

Comment: This would be useful in a course on the philosophy of science or the philosophy of fiction. It is particularly useful for teaching, as it is cutting edge in the philosophy of science but not particularly technical.

Full text
Lavelle, J Suilin, Kenny Smith. Do our modern skulls house stone-age minds?
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge

Expand entry

Added by: Laura Jimenez

Summary: This is the fifth chapter of the book Philosophy and the Sciences for Everyone. The chapter explores scientific interpretations of how our minds evolved, and some of the methodologies used in forming these interpretations. It relates evolutionary debates to a core issue in the philosophy of mind, namely, whether all knowledge comes from experience, or whether we have 'inborn' knowledge about certain aspects of our world.

Comment: Good introduction to evolutionary psychology and the debate about nativism for undergraduate students. It looks at examples coming from ecology such as beaver colonies to understand how the human mind might have adapted to solve specific tasks that our ancestors faced. It is the first chapter of the book dedicated to the philosophy of cognitive sciences. Useful in philosophy of science or philosophy of mind courses.

Full text
Massimi, Michela, Duncan Pritchard. What is this thing called science?
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge

Expand entry

Added by: Laura Jimenez

Summary: This chapter offers a general introduction to philosophy of science. The first part of the chapter takes the reader through the famous relativist debate about Galileo and Cardinal Bellarmine. Several important questions on the topic are explored, such as what makes scientific knowledge special compared with other kinds of knowledge or the importance of demarcating science from non-science. Finally, the chapters gives an overview on how philosophers such as Popper, Duhem, Quine and Kuhn came to answer these questions.

Comment: This chapter could be used as in introductory reading to review the nature of scientific knowledge and the most important debates about the scientific method. It is recommendable for undergraduate courses in philosophy of science. No previous knowledge of the field is needed in order to understand the content. The chapter is an introduction to the rest of the book Philosophy and the Sciences for Everyone. Some discussions explored here, such as the problem of underdetermination or Tomas Kuhn's view of scientific knowledge are central to the following chapters in philosophy of cosmology.

Full text
Series, Peggy, Mark Sprevak. From Intelligent machines to the human brain
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge

Expand entry

Added by: Laura Jimenez

Summary: How does one make a clever adaptive machine that can recognise speech, control an aircraft, and detect credit card fraud? Recent years have seen a revolution in the kinds of tasks computers can do. Underlying these advances is the burgeoning field of machine learning and computational neuroscience. The same methods that allow us to make clever machines also appear to hold the key to understanding ourselves: to explaining how our brain and mind work. This chapter explores this exciting new field and some of the philosophical questions that it raises.

Comment: Really good chapter that could serve to introduce scientific ideas behind the mind-computer analogy. The chapter zooms in on the actual functioning of the human mind as a computer able to perform computations. Recommendable for undergraduate students in Philosophy of Mind or Philosophy of science courses.

Full text
Massimi, Michela, John Peacock. What are dark matter and dark energy?
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge

Expand entry

Added by: Laura Jimenez

Summary: According to the currently accepted model in cosmology, our universe is made up of 5% of ordinary matter, 25% cold dark matter, and 70% dark energy. But what kind of entities are dark matter and dark energy? This chapter asks what the evidence for these entities is and which rival theories are currently available. This provides with an opportunity to explore a well-known philosophical problem known as under-determination of theory by evidence.

Comment: This Chapter could serve as an introduction to contemporary cosmology and particle physics or as an example to illustrate the problem of under-determination of theory by evidence. The chapter looks at alternative theories that explain the same experimental evidence without recourse to the hypothesis of dark matter and dark energy and discusses the rationale for choosing between rival research programs. Like the rest of the chapters in this book, it is a reading recommendable for undergraduate students. It is recommended to read it after Chapter 2 of the same book.

Full text
Massimi, Michela, John Peacock. The origins of the universe: laws, testability and observability in cosmology
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge.

Expand entry

Added by: Laura Jimenez

Summary: How did our universe form and evolve? Was there really a Big Bang, and what came before it? This chapter takes the reader through the history of contemporary cosmology and looks at how scientists arrived at the current understanding of our universe. It explores the history of astronomy, with the nebular hypothesis back in the eighteenth century, and in more recent times, Einstein's general relativity and the ensuing cosmological models. Finally, it explains the current Standard Model and early universe cosmology as well as the experimental evidence behind it.

Comment: This chapter could be used as an introductory reading to philosophy of cosmology. It provides a general overview of the history of cosmology and of the philosophical problems (laws, uniqueness, observability) that stood in the way of cosmology becoming a science. It is recommendable for undergraduate courses.

Can’t find it?
Contribute the texts you think should be here and we’ll add them soon!