-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
Over a period of more than 30 years, more than 100 mathematicians worked on a project to classify mathematical objects known as finite simple groups. The Classification, when officially declared completed in 1981, ranged between 300 and 500 articles and ran somewhere between 5,000 and 10,000 journal pages. Mathematicians have hailed the project as one of the greatest mathematical achievements of the 20th century, and it surpasses, both in scale and scope, any other mathematical proof of the 20th century. The history of the Classification points to the importance of face-to-face interaction and close teaching relationships in the production and transformation of theoretical knowledge. The techniques and methods that governed much of the work in finite simple group theory circulated via personal, often informal, communication, rather than in published proofs. Consequently, the printed proofs that would constitute the Classification Theorem functioned as a sort of shorthand for and formalization of proofs that had already been established during personal interactions among mathematicians. The proof of the Classification was at once both a material artifact and a crystallization of one community’s shared practices, values, histories, and expertise. However, beginning in the 1980s, the original proof of the Classification faced the threat of ‘uninvention’. The papers that constituted it could still be found scattered throughout the mathematical literature, but no one other than the dwindling community of group theorists would know how to find them or how to piece them together. Faced with this problem, finite group theorists resolved to produce a ‘second-generation proof’ to streamline and centralize the Classification. This project highlights that the proof and the community of finite simple groups theorists who produced it were co-constitutive–one formed and reformed by the other.Martin, Ursula, Pease, Alison. Mathematical Practice, Crowdsourcing, and Social Machines2013, in Intelligent Computer Mathematics. CICM 2013. Lecture Notes in Computer Sciences, Carette, J. et al. (eds.). Springer.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend. The Study of Mathematical Practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question-answering system mathoverflow contains around 40,000 mathematical conversations, and polymath collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of “soft” aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal. Crowdsourced mathematical activity is an example of a “social machine”, a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.Comment (from this Blueprint): In this paper, Martin and Pease look at how mathematics happens online, emphasising how this embodies the picture of mathematics given by Polya and Lakatos, two central figures in philosophy of mathematical practice. They look at multiple venues of online mathematics, including the polymath projects of collaborative problem-solving, and mathoverflow, which is a question-and-answer forum. By looking at the discussions that take place when people are doing maths online, they argue that you can get rich new kinds of data about the processes of mathematical discovery and understanding. They discuss how online mathematics can become a “social machine”, and how this can open up new ways of doing mathematics.
Francois, Karen, Vandendriessche, Eric. Reassembling Mathematical Practices: a Philosophical-Anthropological Approach2016, Revista Latinoamericana de Etnomatemática Perspectivas Socioculturales de la Educación Matemática, 9(2): 144-167.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
In this paper we first explore how Wittgenstein’s philosophy provides a conceptual tools to discuss the possibility of the simultaneous existence of culturally different mathematical practices. We will argue that Wittgenstein’s later work will be a fruitful framework to serve as a philosophical background to investigate ethnomathematics (Wittgenstein 1973). We will give an overview of Wittgenstein’s later work which is referred to by many researchers in the field of ethnomathematics. The central philosophical investigation concerns Wittgenstein’s shift to abandoning the essentialist concept of language and therefore denying the existence of a universal language. Languages—or ‘language games’ as Wittgenstein calls them—are immersed in a form of life, in a cultural or social formation and are embedded in the totality of communal activities. This gives rise to the idea of rationality as an invention or as a construct that emerges in specific local contexts. In the second part of the paper we introduce, analyse and compare the mathematical aspects of two activities known as string figure-making and sand drawing, to illustrate Wittgenstein’s ideas. Based on an ethnomathematical comparative analysis, we will argue that there is evidence of invariant and distinguishing features of a mathematical rationality, as expressed in both string figure-making and sand drawing practices, from one society to another. Finally, we suggest that a philosophical-anthropological approach to mathematical practices may allow us to better understand the interrelations between mathematics and cultures. Philosophical investigations may help the reflection on the possibility of culturally determined ethnomathematics, while an anthropological approach, using ethnographical methods, may afford new materials for the analysis of ethnomathematics and its links to the cultural context. This combined approach will help us to better characterize mathematical practices in both sociological and epistemological terms.Comment (from this Blueprint): Francois and Vandendriessche here present a later Wittgensteinian approach to “ethnomathematics”: mathematics practiced outside of mainstream Western contexts, often focused on indigenous or tribal groups. They focus on two case studies, string-figure making and sand-drawing, in different geographic and cultural contexts, looking at how these practices are mathematical.
Carter, Jessica. Diagrams and Proofs in Analysis2010, International Studies in the Philosophy of Science, 24(1): 1-14.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept formation as well as representations of proofs. In addition we note that 'visualization' is used in two different ways. In the first sense 'visualization' denotes our inner mental pictures, which enable us to see that a certain fact holds, whereas in the other sense 'visualization' denotes a diagram or representation of something.Comment (from this Blueprint): In this paper, Carter discusses a case study from free probability theory in which diagrams were used to inspire definitions and proof strategies. Interestingly, the diagrams were not present in the published results making them dispensable in one sense, but Carter argues that they are essential in the sense that their discovery relied on the visualisation supplied by the diagrams.
McCallum, Kate. Untangling Knots: Embodied Diagramming Practices in Knot Theory2019, Journal of Humanistic Mathematics, 9(1): 178-199.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
The low visibility and specialised languages of mathematical work pose challenges for the ethnographic study of communication in mathematics, but observation-based study can offer a real-world grounding to questions about the nature of its methods. This paper uses theoretical ideas from linguistic pragmatics to examine how mutual understandings of diagrams are achieved in the course of conference presentations. Presenters use shared knowledge to train others to interpret diagrams in the ways favoured by the community of experts, directing an audience’s attention so as to develop a shared understanding of a diagram’s features and possible manipulations. In this way, expectations about the intentions of others and appeals to knowledge about the manipulation of objects play a part in the development and communication of concepts in mathematical discourse.Comment (from this Blueprint): McCallum is an ethnographer and artist, who in this piece explores the way in which mathematicians use diagrams in conference presentations, especially in knot theory. She emphasises that there are a large number of ways that diagrams can facilitate communication and understanding. The diagrams are dynamic in many way, and she shows how the way in which a speaker interacts with the diagram (through drawing, erasing, labelling, positioning, emphasising etc.) is part of explaining the mathematics it represents.
De Toffoli, Silvia, Giardino, Valeria. An Inquiry into the Practice of Proving in Low-Dimensional Topology2015, in From Logic to Practice, Gabriele Lolli, Giorgio Venturi and Marco Panza (eds.). Springer International Publishing.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in low-dimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two- and three-dimensional space and motor agency. This imagination allows recognizing the transformations which connect different pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a specific practice: this form of reasoning is subject-matter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in low-dimensional topology.Comment (from this Blueprint): De Toffoli and Giardino look at proof practices in low-dimensional topology, and especially a proof by Rolfsen that relies on epistemic actions on a diagrammatic representation. They make the case that the many diagrams are used to trigger our manipulative imagination to make inferential moves which cannot be reduced to formal statements without loss of intuition.
Dick, Stephanie. AfterMath: The Work of Proof in the Age of Human–Machine Collaboration2011, Isis, 102(3): 494-505.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
During the 1970s and 1980s, a team of Automated Theorem Proving researchers at the Argonne National Laboratory near Chicago developed the Automated Reasoning Assistant, or AURA, to assist human users in the search for mathematical proofs. The resulting hybrid humans+AURA system developed the capacity to make novel contributions to pure mathematics by very untraditional means. This essay traces how these unconventional contributions were made and made possible through negotiations between the humans and the AURA at Argonne and the transformation in mathematical intuition they produced. At play in these negotiations were experimental practices, nonhumans, and nonmathematical modes of knowing. This story invites an earnest engagement between historians of mathematics and scholars in the history of science and science studies interested in experimental practice, material culture, and the roles of nonhumans in knowledge making.Comment (from this Blueprint): Dick traces the history of the AURA automated reasoning assistant in the 1970s and 80s, arguing that the introduction of the computer system led to novel contributions to mathematics by unconventional means. Dick’s emphasis is on the AURA system as changing the material culture of mathematics, and thereby leading to collaboration and even negotiations between the mathematicians and the computer system.
Secco, Gisele Dalva, Pereira, Luiz Carlos. Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem2017, in How Colours Matter to Philosophy, Marcos Silva (ed.). Springer, Cham.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by Tymoczko and some Wittgensteinian topics in the philosophy of mathematics such as the importance of the surveyability as a criterion for distinguishing mathematical proofs from empirical experiments. Our aim is to show that the “characteristic Wittgensteinian invention” (Mühlhölzer 2006) – the strong distinction between proofs and experiments – can shed some light in the conceptual confusions surrounding the Four-Colour Theorem.Comment (from this Blueprint): Secco and Pereira discuss the famous proof of the Four Colour Theorem, which involved the essential use of a computer to check a huge number of combinations. They look at whether this constitutes a real proof or whether it is more akin to a mathematical experiment, a distinction that they draw from Wittgenstein.
2021, Synthese, 199(1): 859-870.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
Mathematicians appear to have quite high standards for when they will rely on testimony. Many mathematicians require that a number of experts testify that they have checked the proof of a result p before they will rely on p in their own proofs without checking the proof of p. We examine why this is. We argue that for each expert who testifies that she has checked the proof of p and found no errors, the likelihood that the proof contains no substantial errors increases because different experts will validate the proof in different ways depending on their background knowledge and individual preferences. If this is correct, there is much to be gained for a mathematician from requiring that a number of experts have checked the proof of p before she will rely on p in her own proofs without checking the proof of p. In this way a mathematician can protect her own work and the work of others from errors. Our argument thus provides an explanation for mathematicians’ attitude towards relying on testimony.Comment (from this Blueprint): The orthodox picture of mathematical knowledge is so individualistic that it often leaves out the mathematician themselves. In this piece, Andersen et al. look at what role testimony plays in mathematical knowledge. They thereby emphasise social features of mathematical proofs, and why this can play an important role in deciding which results to trust in the maths literature.
Müller-Hill, Eva. Formalizability and Knowledge Ascriptions in Mathematical Practice2009, Philosophia Scientiæ. Travaux d'histoire et de philosophie des sciences, (13-2): 21-43.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
We investigate the truth conditions of knowledge ascriptions for the case of mathematical knowledge. The availability of a formalizable mathematical proof appears to be a natural criterion:
(*) X knows that p is true iff X has available a formalizable proof of p.
Yet, formalizability plays no major role in actual mathematical practice. We present results of an empirical study, which suggest that certain readings of (*) are not necessarily employed by mathematicians when ascribing knowledge. Further, we argue that the concept of mathematical knowledge underlying the actual use of “to know” in mathematical practice is compatible with certain philosophical intuitions, but seems to differ from philosophical knowledge conceptions underlying (*).
Comment (from this Blueprint): Müller-Hill is interested in the question of when mathematicians have mathematical knowledge and to what extent it relies on the formalisability of proofs. In this paper, she undertakes an empirical investigation of mathematicians’ views of when mathematicians know a theorem is true. Amazingly, while they say that they believe proofs have an exact definition and that the standards of knowledge are invariant, when presented with various toy scenarios, their judgements seem to suggest systematic context-sensitivity of a number of factors.
Can’t find it?Contribute the texts you think should be here and we’ll add them soon!
-
-
-
This site is registered on Toolset.com as a development site. -
-
-
-
-
-
Steingart, Alma. A Group Theory of Group Theory: Collaborative Mathematics and the ‘Uninvention’ of a 1000-page Proof
2012, Social Studies of Science, 42(2): 185-213.
Comment (from this Blueprint): Steingart is a sociologist who charts the history and sociology of the development of the extremely large and highly collaborative Classification Theorem. She shows that the proof involved a community deciding on shared values, standards of reliability, expertise, and ways of communicating. For example, the community became tolerant of so-called “local errors” so long as these did not put the main result at risk. Furthermore, Steingart discusses how the proof’s text is distributed across a wide number of places and requires expertise to navigate, leaving the proof in danger of uninvention if the experts retire from mathematics.