This book describes how logical reasoning works and puts it to the test in applications. It is self-contained and presupposes no more than elementary competence in mathematics. |
Proof Theory: Sequent Calculi and Related Formalisms
Publisher’s Note: Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics.
The Logic Book
Summary: This book is an introductory textbook on mathematical logic. It covers Propositional Logic and Predicate Logic. For each of these formalisms it presents its syntax and formal semantics as well as a tableaux-style method of consistency-checking and a natural deduction-style deductive calculus. Moreover, it discusses the metatheory of both logics.
An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems
Publisher’s note: This volume is an accessible introduction to the subject of many-valued and fuzzy logic suitable for use in relevant advanced undergraduate and graduate courses. The text opens with a discussion of the philosophical issues that give rise to fuzzy logic – problems arising from vague language – and returns to those issues as logical systems are presented. For historical and pedagogical reasons, three valued logical systems are presented as useful intermediate systems for studying the principles and theory behind fuzzy logic. The major fuzzy logical systems – Lukasiewicz, Godel, and product logics – are then presented as generalizations of three-valued systems that successfully address the problems of vagueness. Semantic and axiomatic systems for three-valued and fuzzy logics are examined along with an introduction to the algebras characteristic of those systems. A clear presentation of technical concepts, this book includes exercises throughout the text that pose straightforward problems, ask students to continue proofs begun in the text, and engage them in the comparison of logical systems.
Understanding Symbolic Logic
Description – This comprehensive introduction presents the fundamentals of symbolic logic clearly, systematically, and in a straightforward style accessible to readers. Each chapter, or unit, is divided into easily comprehended small bites that enable learners to master the material step-by-step, rather than being overwhelmed by masses of information covered too quickly. The book provides extremely detailed explanations of procedures and techniques, and was written in the conviction that anyone can thoroughly master its content. A four-part organization covers sentential logic, monadic predicate logic, relational predicate logic, and extra credit units that glimpse into alternative methods of logic and more advanced topics.
First Order Logic: An Introduction
Publisher’s Note: This teaching book is designed to help its readers to reason systematically, reliably, and to some extent self-consciously, in the course of their ordinary pursuits-primarily in inquiry and in decision making. The principles and techniques recommended are explained and justified – not just stated; the aim is to teach orderly thinking, not the manipulation of symbols. The structure of material follows that of Quine’s Methods of Logic, and may be used as an introduction to that work, with sections on truth-functional logic, predicate logic, relational logic, and identity and description. Exercises are based on problems designed by authors including Quine, John Cooley, Richard Jeffrey, and Lewis Carroll.