Prominent mathematician William Thurston was praised by other mathematicians for his intellectual generosity. But what does it mean to say Thurston was intellectually generous? And is being intellectually generous beneficial? To answer these questions I turn to virtue epistemology and, in particular, Roberts and Wood’s (2007) analysis of intellectual generosity. By appealing to Thurston’s own writings and interviewing mathematicians who knew and worked with him, I argue that Roberts and Wood’s analysis nicely captures the sense in which he was intellectually generous. I then argue that intellectual generosity is beneficial because it counteracts negative effects of the reward structure of mathematics that can stymie mathematical progress.
The Dialogical Roots of Deduction: Historical, Cognitive, and Philosophical Perspectives on Reasoning
This comprehensive account of the concept and practices of deduction is the first to bring together perspectives from philosophy, history, psychology and cognitive science, and mathematical practice. Catarina Dutilh Novaes draws on all of these perspectives to argue for an overarching conceptualization of deduction as a dialogical practice: deduction has dialogical roots, and these dialogical roots are still largely present both in theories and in practices of deduction. Dutilh Novaes’ account also highlights the deeply human and in fact social nature of deduction, as embedded in actual human practices; as such, it presents a highly innovative account of deduction. The book will be of interest to a wide range of readers, from advanced students to senior scholars, and from philosophers to mathematicians and cognitive scientists.
A Group Theory of Group Theory: Collaborative Mathematics and the ‘Uninvention’ of a 1000-page Proof
Over a period of more than 30 years, more than 100 mathematicians worked on a project to classify mathematical objects known as finite simple groups. The Classification, when officially declared completed in 1981, ranged between 300 and 500 articles and ran somewhere between 5,000 and 10,000 journal pages. Mathematicians have hailed the project as one of the greatest mathematical achievements of the 20th century, and it surpasses, both in scale and scope, any other mathematical proof of the 20th century. The history of the Classification points to the importance of face-to-face interaction and close teaching relationships in the production and transformation of theoretical knowledge. The techniques and methods that governed much of the work in finite simple group theory circulated via personal, often informal, communication, rather than in published proofs. Consequently, the printed proofs that would constitute the Classification Theorem functioned as a sort of shorthand for and formalization of proofs that had already been established during personal interactions among mathematicians. The proof of the Classification was at once both a material artifact and a crystallization of one community’s shared practices, values, histories, and expertise. However, beginning in the 1980s, the original proof of the Classification faced the threat of ‘uninvention’. The papers that constituted it could still be found scattered throughout the mathematical literature, but no one other than the dwindling community of group theorists would know how to find them or how to piece them together. Faced with this problem, finite group theorists resolved to produce a ‘second-generation proof’ to streamline and centralize the Classification. This project highlights that the proof and the community of finite simple groups theorists who produced it were co-constitutive–one formed and reformed by the other.
Diagrams and Proofs in Analysis
This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept formation as well as representations of proofs. In addition we note that ‘visualization’ is used in two different ways. In the first sense ‘visualization’ denotes our inner mental pictures, which enable us to see that a certain fact holds, whereas in the other sense ‘visualization’ denotes a diagram or representation of something.
An Inquiry into the Practice of Proving in Low-Dimensional Topology
The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in low-dimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two- and three-dimensional space and motor agency. This imagination allows recognizing the transformations which connect different pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a specific practice: this form of reasoning is subject-matter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in low-dimensional topology.
AfterMath: The Work of Proof in the Age of Human–Machine Collaboration
During the 1970s and 1980s, a team of Automated Theorem Proving researchers at the Argonne National Laboratory near Chicago developed the Automated Reasoning Assistant, or AURA, to assist human users in the search for mathematical proofs. The resulting hybrid humans+AURA system developed the capacity to make novel contributions to pure mathematics by very untraditional means. This essay traces how these unconventional contributions were made and made possible through negotiations between the humans and the AURA at Argonne and the transformation in mathematical intuition they produced. At play in these negotiations were experimental practices, nonhumans, and nonmathematical modes of knowing. This story invites an earnest engagement between historians of mathematics and scholars in the history of science and science studies interested in experimental practice, material culture, and the roles of nonhumans in knowledge making.
Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem
The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970’s, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by Tymoczko and some Wittgensteinian topics in the philosophy of mathematics such as the importance of the surveyability as a criterion for distinguishing mathematical proofs from empirical experiments. Our aim is to show that the “characteristic Wittgensteinian invention” (Mühlhölzer 2006) – the strong distinction between proofs and experiments – can shed some light in the conceptual confusions surrounding the Four-Colour Theorem.
Authorship in top-ranked mathematical and physical journals: Role of gender on self-perceptions and bibliographic evidence
Despite increasing rates of women researching in math-intensive fields, publications by female authors remain underrepresented. By analyzing millions of records from the dedicated bibliographic databases zbMATH, arXiv, and ADS, we unveil the chronological evolution of authorships by women in mathematics, physics, and astronomy. We observe a pronounced shortage of female authors in top-ranked journals, with quasistagnant figures in various distinguished periodicals in the first two disciplines and a significantly more equitable situation in the latter. Additionally, we provide an interactive open-access web interface to further examine the data. To address whether female scholars submit fewer articles for publication to relevant journals or whether they are consciously or unconsciously disadvantaged by the peer review system, we also study authors’ perceptions of their submission practices and analyze around 10,000 responses, collected as part of a recent global survey of scientists. Our analysis indicates that men and women perceive their submission practices to be similar, with no evidence that a significantly lower number of submissions by women is responsible for their underrepresentation in top-ranked journals. According to the self-reported responses, a larger number of articles submitted to prestigious venues correlates rather with aspects associated with pronounced research activity, a well-established network, and academic seniority.
Historical Context of the Gender Gap in Mathematics
This chapter is based on the talk that I gave in August 2018 at the ICM in Rio de Janeiro at the panel on The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective. It provides some examples of the challenges and prejudices faced by women mathematicians during last two hundred and fifty years. I make no claim for completeness but hope that the examples will help to shed light on some of the problems many women mathematicians still face today.
Mathematicians Writing for Mathematicians
We present a case study of how mathematicians write for mathematicians. We have conducted interviews with two research mathematicians, the talented PhD student Adam and his experienced supervisor Thomas, about a research paper they wrote together. Over the course of 2 years, Adam and Thomas revised Adam’s very detailed first draft. At the beginning of this collaboration, Adam was very knowledgeable about the subject of the paper and had good presentational skills but, as a new PhD student, did not yet have experience writing research papers for mathematicians. Thus, one main purpose of revising the paper was to make it take into account the intended audience. For this reason, the changes made to the initial draft and the authors’ purpose in making them provide a window for viewing how mathematicians write for mathematicians. We examined how their paper attracts the interest of the reader and prepares their proofs for validation by the reader. Among other findings, we found that their paper prepares the proofs for two types of validation that the reader can easily switch between.